Some Businesses Fail

- Businesses led by persons who think ahead, and are able to respond with ingenuity and flexibility survive.

- Today’s course will help you prepare your company to survive disasters.

Three surviving structures in the Financial District can be seen in this dramatic photo. At far left is the Kohl Building on Montgomery Street, the Merchants' Exchange Building on California and, in the center of the picture, the Mills Building on Montgomery.
Business Objectives

- Protect employees and customers from harm; and
- Either remain operational or resume operations in a timely fashion
 - Protect cash flow
 - Retain employees
 - Protect market share and reputation
Business Losses

- Direct damage
 - Harm to employees
 - Damage to structures, equipment and inventories;
- Indirect losses
 - Loss of power or water supply
 - Transportation and telecommunication failure
- Loss of employees
 - Injury to self of family
 - Damage to homes, or to transportation systems
The 1906 Scenario

- Regional damage
- About 3000 deaths
- About 30,000 buildings destroyed
- About 10,000 commercial buildings destroyed
- About 200,000 households displaced
- Economic losses about $150 billion

Sentinel Building at Kearney and Columbus
Scenario Implications

- Firefighters and police will save lives, not businesses
- Employees may be stranded
- Suppliers may not deliver
- Business interruption for weeks or longer
- Government recovery programs are slow
The Ford Store: Consequences

- Loss of wealth
- Loss of a family legacy
- Loss of a community-based store
- Loss of a good friend and customer

Bystanders and passers-by became rescuers moments after the earthquake struck as they dug through the rubble of the Ford’s department store in Santa Cruz, looking for survivors.

-Santa Cruz Sentinel
What about your company?

- Is your company prepared?
- Do company executives understand the risk?
 - CEOs, CFOs, Risk Managers and Legal Counsel
- Who would be held responsible for failure?
- This course will give you the tools to begin preparing your company
NFPA 1600 elements in today's presentations

<table>
<thead>
<tr>
<th>Program Management and Administration</th>
<th>Lucus Greulich</th>
<th>Resources Management</th>
<th>Greulich</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laws and Authorities</td>
<td>Lucus Greulich</td>
<td>Mutual Aid</td>
<td>Greulich</td>
</tr>
<tr>
<td>Hazard Identification and Risk Assessment</td>
<td>Swan</td>
<td>Planning</td>
<td>Lucus</td>
</tr>
<tr>
<td>Finance and Administration</td>
<td>Greulich</td>
<td>Direction, Control and Coordination</td>
<td>Greulich</td>
</tr>
<tr>
<td>Hazard Mitigation</td>
<td>Swan</td>
<td>Communication and Warning</td>
<td>Baur</td>
</tr>
<tr>
<td>Logistics and Facilities</td>
<td>Swan Greulich</td>
<td>Operations and Procedures</td>
<td>Greulich</td>
</tr>
<tr>
<td>Training Exercises, Evaluations and Corrective Actions</td>
<td>Greulich</td>
<td>Crisis Communication and Public Information</td>
<td>Baur</td>
</tr>
</tbody>
</table>
Business Survival in Earthquake Country

Tom Tobin - Introduction
Sam Swan - The Risk
Valerie Lucus - Planning for Survival
Bill Greulich - Management for Survival
Clelia Baur - Communications
Tom Tobin - Discussion
The Risk:
Impact of a Major Earthquake on the Bay Area

Sam Swan
Acceptable Risk LLC
Hazard Assessments Suggested by NFPA-1600:

<table>
<thead>
<tr>
<th>Natural</th>
<th>Technical</th>
<th>Social</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earthquake</td>
<td>Prolonged Power Outage</td>
<td>Supplier Business Failure</td>
</tr>
<tr>
<td>Flood</td>
<td>Prolonged Gas Outage</td>
<td>Adverse media Event</td>
</tr>
<tr>
<td>Wildfire</td>
<td>Prolonged Sewer Outage</td>
<td>EPA Violation</td>
</tr>
<tr>
<td>Drought</td>
<td>Prolonged Water Outage</td>
<td>Service Company Strike</td>
</tr>
<tr>
<td>Windstorm or Tornado</td>
<td>Critical Equipment Failure</td>
<td>Staff Strike</td>
</tr>
<tr>
<td>Volcano</td>
<td>Building Fire</td>
<td>Sabotage</td>
</tr>
<tr>
<td>Extreme Heat/Cold</td>
<td>Hazardous Material Release</td>
<td>Theft</td>
</tr>
</tbody>
</table>
Ground Shaking Intensity: Conventionally Measured by the Modified Mercalli Scale
Illustration of Ground Motion Intensity:
Morgan Hill, Hall’s Valley Earthquake: MMI VII
Illustration of Ground Motion Intensity: Hollister, Loma Prieta Earthquake: MMI VIII
Illustration of Ground Motion Intensity:
Central Luzon, 1990 Philippine Earthquake, MMI IX
Illustration of Ground Motion Intensity:
Bay of Plenty, 1987 New Zealand Earthquake: MMI X
Shaking Intensity Map for San Francisco
1989 Loma Prieta Earthquake

SHAKING INTENSITY
Model of the 1989 Loma Prieta Earthquake Magnitude 6.9

Modified Mercalli Intensity
Shaking Severity Level
- X-Very Violent
- IX-Violent
- VIII- Very Strong
- VII- Strong
- VI- Moderate
- V-Light
- Highways
- Streets

Source: ABAG, 1999
The map is intended for planning only. Intensities may be incorrect by one unit higher or lower. Current version of map available on Internet at http://quake.abag.ca.gov
Potentially Damaging Earthquakes Affecting San Francisco 1850 - 2000

<table>
<thead>
<tr>
<th>Year</th>
<th>Epicenter</th>
<th>Est. Magnitude</th>
<th>Probable MMI In South San Francisco</th>
</tr>
</thead>
<tbody>
<tr>
<td>1865</td>
<td>Santa Cruz Mountains.</td>
<td>6.3</td>
<td>VI – VII</td>
</tr>
<tr>
<td>1868</td>
<td>Hayward</td>
<td>6.8</td>
<td>VII – VIII</td>
</tr>
<tr>
<td>1906</td>
<td>North San Andreas Fault</td>
<td>8.3</td>
<td>VIII – X</td>
</tr>
<tr>
<td>1911</td>
<td>San Jose</td>
<td>6.6</td>
<td>VI – VII</td>
</tr>
<tr>
<td>1957</td>
<td>Daly City</td>
<td>5.3</td>
<td>VI – VII</td>
</tr>
<tr>
<td>1989</td>
<td>Santa Cruz</td>
<td>7.1</td>
<td>VI – VII</td>
</tr>
</tbody>
</table>
Shaking Intensity Return Period for Typical Bay Area Site

- **ARTIFICIAL FILL**
- **SOFT SOIL SITES**
- **FIRM SOIL SITES**

Axes:
- Vertical: Modified Mercalli Intensity
- Horizontal: Earthquake Return Period in Years
Earthquake Effects on Building Structures
Post-Earthquake Tagging of Buildings by City Inspectors

<table>
<thead>
<tr>
<th>Tag</th>
<th>Consequences</th>
<th>Typical Repair Cost as % of Replacement</th>
<th>Business Interruption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>Minimal damage
Structure can be reoccupied</td>
<td>5%</td>
<td>Hours</td>
</tr>
<tr>
<td>Yellow</td>
<td>Moderate damage
Detailed inspection by structural engineer required</td>
<td>10%</td>
<td>Days</td>
</tr>
<tr>
<td>Red</td>
<td>Possible collapse in second earthquake
Extensive structural repairs required</td>
<td>20%</td>
<td>Months</td>
</tr>
</tbody>
</table>
Tilt-up Building Damage

Failure of Roof-wall Connection

1994 Northridge Earthquake MMI VIII-IX
Damage to Concrete Frame Structures

Imperial Valley 1979
Damage to Steel Moment Frame Buildings

Fractures at Framing Connections

1994 Northridge Earthquake
Performance of Steel-Framed Buildings in the 1994 Northridge Earthquake

Source: EQE Inc. for Governor’s Office of Emergency Planning

Modified Mercalli Intensity

Earthquake Return Period in Years

Northridge Earthquake, Steel-Framed Buildings: 100% Yellow- or Red-Tagged, 60% Red Tagged

Northridge Earthquake, Steel-Framed Buildings: 30% Yellow- or Red-Tagged, 10% Red Tagged

Northridge Earthquake, Steel-Framed Buildings: 15% Yellow- or Red-Tagged, 3% Red Tagged

ARTIFICIAL FILL
SOFT SOIL SITES
FIRM SOIL SITES
Earthquake Effects on Building Contents
Building Contents:
Primary Source of Equipment Damage:
Lack of Anchorage
For Narrow-Base Equipment, Floor Anchorage Reduces the Probability of Earthquake Damage by a Factor of Four
Sources of Secondary Earthquake Damage:
Rupture of Overhead Piping
Primary Cause of Rupture Piping: Interaction of Piping and Suspended Ceilings

Collapsed Suspended Ceiling with Rupture of Overhead Water Lines, Northridge Earthquake, 1994, MMI IX
Tendency for Rupture:
Ceiling Embedded vs. Exposed Piping

Probability of Failure

Modified Mercalli Intensity

Exposed Pipe/1,000 ft.

Ceiling-Embedded Fire Sprinkler Line/1,000 ft.

Probability of Failure

0.01 0.1 0.5 1 2 5 10 20 30 40 50 60 70 80 90 95 98 99 99.8 99.99
Earthquake Effects on Regional Lifelines
Earthquake Damage to Substations: 1989 Loma Prieta Earthquake, MMI VIII

1989 Loma Prieta Moss Landing Power Station
Effect of a Maximum Earthquake in the Costa Range Sierra Block Fault Zone Centered Southeast of Vacaville

Fault Rupture for 500-Year Event: Magnitude 6.7

<table>
<thead>
<tr>
<th>SUBSTATION</th>
<th>GROUND SHAKING</th>
<th>PERIOD OF OUTAGE</th>
<th>EFFECT ON BAY AREA POWER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaca-Dixon</td>
<td>IX</td>
<td>1-2 Weeks</td>
<td>Loss of 30% of Power</td>
</tr>
<tr>
<td>Contra Costa</td>
<td>VIII+</td>
<td>3-5 Days</td>
<td>Loss of 5% of Power</td>
</tr>
<tr>
<td>Pittsburg</td>
<td>VIII</td>
<td>3-5 Days</td>
<td>Loss of 20% of Power</td>
</tr>
<tr>
<td>Tesla</td>
<td>VII</td>
<td>1-2 Days</td>
<td>Loss of 15% of Power</td>
</tr>
</tbody>
</table>

Overall Effect on Bay Area Power: General Blackout for 1-2 Days. Power 50%-70% of the Day for 1-2 Weeks.
Natural Gas Pipelines Serving the Bay Area

<table>
<thead>
<tr>
<th>Expected Breaks in Natural Gas Pipelines into the Bay Area vs. Ground Shaking</th>
<th>MMI VII</th>
<th>MMI VIII</th>
<th>MMI IX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single section of 5-mile pipeline from Irvington to Milpitas regulating stations</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Single section of 10-mile pipeline from double line-junction near Evergreen to Milpitas regulating station</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Two parallel pipelines downstream of Milpitas to San Francisco: 40 miles (Number of breaks in each line)</td>
<td>1</td>
<td>4</td>
<td>12</td>
</tr>
</tbody>
</table>
Water Pipelines Serving the North San Francisco Peninsula

<table>
<thead>
<tr>
<th>Pipeline</th>
<th>Length of Pipeline Route</th>
<th>Expected Number of Repairs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MMI VII</td>
</tr>
<tr>
<td>Crystal Springs No. 2</td>
<td>15 miles Crystal Springs Reservoir to SSF turnouts</td>
<td>1</td>
</tr>
<tr>
<td>Sunset Pipeline</td>
<td>12 miles Crystal Springs Reservoir to Baden valve yard</td>
<td>1</td>
</tr>
<tr>
<td>Sunset Branch Pipeline</td>
<td>6 miles Harry Tracy plant to Baden valve yard</td>
<td>0</td>
</tr>
<tr>
<td>San Andreas Pipeline No. 2</td>
<td>6 miles San Andreas Reservoir to Baden valve yard</td>
<td>0</td>
</tr>
<tr>
<td>San Andreas Pipeline No. 3</td>
<td>6 miles Harry Tracy plant to Baden valve yard</td>
<td>0</td>
</tr>
</tbody>
</table>
Traffic Arteries: The San Francisco Peninsula is Dependent Upon Hi-101 & i-280
Cause of Highway Closure:
Liquefaction, 1991 Costa Rica Earthquake, MMI X
Freeway Closures:
Peninsula Segment of the San Andreas Fault: Magnitude 7.2

East Bay:
Closure Every 20 - 30 Miles

Peninsula:
Closure Every 5 - 10 Miles

RESULT:
HI-101 and I-280 Essentially
Unavailable for 2 - 6 Months
Truck and Auto Traffic Not a Viable Option
for Peninsula Transport
RESULTS:
Northern Section of Hi-101 Essentially Unavailable for 2 Weeks - 2 Months.
I-880 and 680 Essentially Unavailable for 2 - 6 Months
Limited Truck and Auto Transport on I-280: Hours 2 - 4 A.M.
Freeway Closures: Northern Calaveras Fault: Magnitude 7.0

- **East Bay:** One or Two Closures Where I-80 or I-880 Intersects Soft Fill
- **Almaden Valley:** Closure Every ~5 Miles
- **SouthEast Bay:** Closure Every ~10 Miles

RESULT:
- I-280 Via HI-101 from San Jose and HI-24 Via I-680 Across the Bay Bridge are the Only Viable Routes onto the Peninsula for 2 - 4 Weeks
- Stop-and-Go Traffic on these Routes 16 Hours a Day
Restoration of Regional Lifelines Following an Earthquake
Typical Industrial Site: Loss vs. Probability of Exceedence

- **Probable Maximum Loss:** Direct Damage + Business Interruption
- **Direct Damage + Business Interruption**
- **Direct Damage**

Annual Value of Insured Risk: $250,000/year

Annual Value of Retained Risk: $140,000/year

- **Probability of Exceedence per Year**
 - 5.0%: 20 years
 - 4.5%: 25 years
 - 4.0%: 30 years
 - 3.5%: 40 years
 - 3.0%: 50 years
 - 2.5%: 67 years
 - 2.0%: 100 years
 - 1.5%: 200 years
 - 1.0%: 500 years

- **Probability of Exceedence in a 30-Year Planning Period**
 - 75%: 63%
 - 50%: 45%
 - 25%: 25%
 - 14%: 14%
 - 6%: 6%
Planning for Survival

Valerie Lucus
CEM, CBCP
University of California at Davis
FPQ1: “A good plan is like a road map: it shows the final destination and usually the best way to get there.”
FPQ2: “Life is what happens to you while you’re busy making other plans.”
FPQ3: “In preparing for battle, I have always found that plans are useless, but planning is indispensable.”
FPQ4: “He who fails to plan, plans to fail.”
FPQ5: “Let your plans be dark and as impenetrable as night, and when you move, fall like a thunderbolt.”
FPQ6: “A good plan violently executed now is better than a perfect plan next week.”
FPQ7: “Bad planning on your part does not constitute an emergency on my part.”
What is a plan?

FPQ8: “A plan is a list of actions arranged in whatever sequence is thought likely to achieve an objective.”
What Kind of Plans?

- **Emergency Operations Plan** – assigns responsibility to organizations and individuals to carry out specific actions at projected times and places in an emergency or disaster.
- **Recovery Plan** – strategies based on the short-term and long-term priorities, processes, vital resources and acceptable time frames to restore services, facilities, programs and infrastructure.
- **Mitigation Plan** – establish interim and long-term actions to eliminate hazards that impact the entity or to reduce the impact of hazards that cannot be eliminated.
- **Continuity Plan** – identify the critical and time sensitive applications, vital records, processes and functions to be maintained, as well as the personnel and procedures necessary to do so, while entity is being recovered.
- **Strategic Plan** – Defines vision, mission, goals and objectives of the program.
What Kind of Plans?

Strategic Plan

"XYZ" Emergency/Disaster Program Plan

- EOP
- Mitigation
- Recovery
- Continuity
Why Plan?

1. The value of documenting institutional memory.

FPQ9: “Planning to write is not writing. Writing is writing.”
Why Plan?

2. Drawing the map

FPQ10: “Reduce your plan to writing. The moment you complete this, you will have definitely given concrete form to the intangible desire.”
PLANNING IS DIFFICULT BECAUSE …

It is boring…

FPQ11: “Planning is an unnatural process; it is much more fun to do something. The nicest thing about not planning is that failure comes as a complete surprise, rather than being preceded by a period of worry and depression.”
PLANNING IS DIFFICULT BECAUSE …

Organizational Theory explains:

1. Tendency of groups to seek autonomy (I don’t want to play!)
2. Professional ideologies (That is NOT how I see it.)
3. Differences in organizational technologies and resource needs (I’m special and, therefore, I need more than anyone else.)
4. Fear of loss of identity of group (What will happen to me?)
5. Concern about redirection of scarce resources (What if they take away what I already have?)
6. Differences in costs/benefits of participating (What’s in it for me?)
PLANNING IS DIFFICULT BECAUSE ...

It is often thankless ...

FPQ12: “There is nothing more difficult...than to take the lead in the introduction of a new order of things.”
Why pay attention?

1811 New Madrid Earthquakes
1849-1905 Drought in Arizona
1900 Hurricane hits Galveston, Texas
1906 San Francisco Earthquake
1918 Spanish Flu
1920 8.6 Earthquake in China
1923 8.3 Earthquake in Tokoyo
1939 8.3 Earthquake in Chile
1946 Tsunami in Hilo, Hawaii
1957 Good Friday Earthquake in Alaska
1960 8.6 Earthquake in India
1970 Cyclone in Bangladesh
1974 Tornadoes in US
1980 Mount St. Helens
1984 Bhabal, India chemical leaks
1985 Volcanic Eruption in Columbia
1986 Chernobyl nuclear meltdown
1989 Exxon Valdez Oil Spill
2004 9.0 Earthquake and Tsumani off coast of Indonesia
2005 Hurricane Katrina

FPQ13: “The Earth has a history of catastrophes and that history will continue.”
FPQ14: “The problem is not whether business will survive in competition with business, but whether any business will survive at all in the face of social change.”
Why pay attention?

Your stakeholders …

- Employees
- Customers
- Shareholders
- Business Partners

… want to ensure you take all necessary steps to minimize risk, avoid liability, ensure safety, endure government and public scrutiny.
Why use the NFPA 1600?

1. Only nationally recognized consensus standard that applies to the entire emergency/disaster/continuity program.

2. The Intelligence Reform and Terrorism Prevention Act of 2004:

3. 9-11 Commission
Why use NFPA 1600?

4. They are already being used as a standard for local and state governments.

April, 2004

- 47 Baseline Assessment conducted, 4 pending
- 9 state/local government fully accredited:
Why pay attention?
“Trying to predict the future is like trying to drive down a country road at night with no lights while looking out the back window."
Management for Survival

Bill Greulich
Kensington Consulting
Operational Risk

- “The risk of loss from inadequate or failed internal processes, people and systems or external events.”

- Loss of operations, finances, legal, reputation, and other material aspects of your business.

- What business survival measures does your organization support and who do they empower to implement them?
Impact Analysis

- Cause and effect
- Scenario planning
- Qualitative
- Quantitative
Survival Funding

- Board level solutions such as redundant sites
- Leadership level solutions such as local redundancy
- Built environment (engineering) solutions
- Enterprise solutions such as inventory
- Cooperative solutions such as contract conversion
Resource Allocation

• Emotion

• Mathematics
 – Preferences
 – Utility

• Methods
 – Cost Avoidance
 – Replacement Cost
 – Substitute Cost
Insurance Gaps

- Analyze your loss, actual and business interruption (BI)
- Forecast loss as your business changes
- Estimate your PML
- Are you properly insured?
- Are you deriving full value as an insured?
Deming Cycle

- Plan the process improvement
- Do the improvement, data collection and data analysis
- Check the results and lessons learned
- Act by adopting, adjusting or abandoning the change.
Survival Management System

• If you have systems for:
 – Financial
 – Manufacturing
 – Quality
 – Environmental
 – Safety

• How about business survival?
Disaster Response Procedures

- Do you plan on responding?

- Does your plan include tactical procedures?
 - Who?
 - When?
 - How?
 - With what?

- Do your professional responders know this?

- Have you ever had to respond?
 - How did that go?
 - What did you do with the knowledge?
Standards of care

• Emergency Management and Business Continuity Programs (NFPA1600)

• Consensus standards are becoming the norm
Incident Management System

• National Incident Management System (NIMS)

• Standardized Incident Management System (SEMS)
 – Management
 • Communications
 • Safety
 – Operations
 • Incident Command System
 – Planning
 – Logistics
 – Finance
Earthquake Example

• Inspection preplanning
 – Describe structures
 – Identify critical points
 – Assign inspectors
 – Coordinate with AHJ
Disaster Recovery Procedures

“I was proud of the family business and I wanted to keep that alive, and I wanted that to survive. But I also felt the responsibility for all my employees to take care of them, to give them jobs.”

Aaron Feuerstein

- What is your time line for recovery?
- How do you staff and finance recovery?
- How do you maintain your market?
- Does your plan include these elements?
 - Who?
 - When?
 - How?
 - With what?
Regional Resource Impacts

• Professional response

• Staff response

• Utilities

• Critical materials
 – Transportation
 – They are impacted
Laws and Authorities Example

- Regulated Hazards
 - Acute risks to employees or community.
 - Air districts
 - Water districts
 - EPA RMP
 - OSHA PSM
 - Notifications and warning.
Training and Exercises

• Discussion
 – Seminars
 – Workshops
 – Tabletops
 – Games

• Field
 – Drills
 – Functional
 – Full Scale

• Evaluation

• Implement Improvements
Communicating in an Emergency

Using common-sense planning and regular crisis exercises, you can use communications to keep damage to a minimum.
Crisis Communications – Setting the Scene

• Your business – your world
 – What is at stake
 • Safety and welfare
 (information can save lives)
 • Image (confidence in your business)
 • Material resources (real estate, equipment, supply chain)
Crisis Communications – Setting the Scene

– Your role
 • Communicator – directly responsible for internal and external messages
 • Emergency planning team – responsible for safety and loss prevention at your company
Crisis Communications – Best Practices

• Integrated Contingency Plan
• Handling the media
• Internal and external communications
• Supporting business resumption efforts
• Strategic collaboration – Joint Information Center
Crisis Communications – Setting the Scene

• Your business – your world
 – Your company’s worst nightmare
 • Natural disaster
 • Accident, injury, fatality
 • Release, spill, environmental problem
 • Product recall
 • Protest, demonstration, picketing
Crisis Communications – Setting the Scene

Your best defense:
– A good contingency plan
– Thorough training and periodic drills
– Resolution to follow the plan to the letter

• Our focus for this talk: Communications
Crisis Communications: Key Elements of a Communications Contingency Plan

- Helps you identify & deploy resources you will need
 - Systems, equipment and materials
 - Clear roles and training for each person
 - Alternate personnel until primary person can respond
 - Rotating, back-up shifts
 - Food and rest breaks
 - Help from consultants and SMEs
Crisis Communications: Key Elements of a Communications Contingency Plan

Defines the communication objectives

- Develop clear, simple primary messages
- Identify your stakeholders
- Documents your local partner network (other responders)
- Consistent messages tailored for each audience
- Integrate crisis messages into your global company image
Crisis Communications: Key Elements of a Communications Contingency Plan

Clearly describes the process steps

– What you must do and when
– Who may speak to the media and the community
– Who must approve internal messages to employees
– Who must approve media and external communications
Crisis Communications: Key Elements of a Communications Contingency Plan

- Outlines specific media relations procedures
 - Dealing with breaking news
 - Periodic alerts
 - Use media to communicate with the community
 - Standby statements
Crisis Communications: Key Elements of a Communications Contingency Plan

- Outlines specific media relations procedures
 - Dealing with near-term information
 - Faxed or web-posted updates
 - Periodic announcements
 - Reactive phone interviews
Crisis Communications: Key Elements of a Communications Contingency Plan

• Outlines specific media relations procedures
 – Dealing with long lead-time information
 • In-person interviews
 • Faxed or web-posted advisories and context information
 • Follow-up phone calls
 • Contact stakeholders directly; public outreach to elected officials, customers, community
Crisis Communications: Key Elements of a Communications Contingency Plan

- Outlines specific internal communication processes
Crisis Communications: Key Elements of a Communications Contingency Plan

• Training and procedures: preparing for a crisis
 – Internal processes for obtaining information and approving content
 – Pre-approved key messages and standby statements
 – Distributing and documenting communications